Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Sci Signal ; 16(783): eade1985, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2320556

ABSTRACT

Coronaviruses that can infect humans can cause either common colds (HCoV-NL63, HCoV-229E, HCoV-HKU1, and HCoV-OC43) or severe respiratory symptoms (SARS-CoV-2, SARS-CoV, and MERS-CoV). The papain-like proteases (PLPs) of SARS-CoV, SARS-CoV-2, MERS-CoV, and HCoV-NL63 function in viral innate immune evasion and have deubiquitinating (DUB) and deISGylating activities. We identified the PLPs of HCoV-229E, HCoV-HKU1, and HCoV-OC43 and found that their enzymatic properties correlated with their ability to suppress innate immune responses. A conserved noncatalytic aspartic acid residue was critical for both DUB and deISGylating activities, but the PLPs had differing ubiquitin (Ub) chain cleavage selectivities and binding affinities for Ub, K48-linked diUb, and interferon-stimulated gene 15 (ISG15) substrates. The crystal structure of HKU1-PLP2 in complex with Ub revealed binding interfaces that accounted for the unusually high binding affinity between this PLP and Ub. In cellular assays, the PLPs from the severe disease-causing coronaviruses strongly suppressed innate immune IFN-I and NF-κB signaling and stimulated autophagy, whereas the PLPs from the mild disease-causing coronaviruses generally showed weaker effects on immune suppression and autophagy induction. In addition, a PLP from a SARS-CoV-2 variant of concern showed increased suppression of innate immune signaling pathways. Overall, these results demonstrated that the DUB and deISGylating activities and substrate selectivities of these PLPs differentially contribute to viral innate immune evasion and may affect viral pathogenicity.


Subject(s)
COVID-19 , Papain , Humans , Papain/chemistry , Papain/genetics , Papain/metabolism , SARS-CoV-2/metabolism , Peptide Hydrolases/metabolism , Ubiquitin/metabolism , Immunity, Innate
2.
J Virol ; 97(5): e0037523, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-2316566

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Coronavirus/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Lysine/metabolism , Swine , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virus Replication
3.
J Med Virol ; 95(4): e28719, 2023 04.
Article in English | MEDLINE | ID: covidwho-2299549

ABSTRACT

The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Innate , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitination , Coronavirus Nucleocapsid Proteins/metabolism
4.
Nat Commun ; 14(1): 2366, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2305876

ABSTRACT

The Papain-like protease (PLpro) is a domain of a multi-functional, non-structural protein 3 of coronaviruses. PLpro cleaves viral polyproteins and posttranslational conjugates with poly-ubiquitin and protective ISG15, composed of two ubiquitin-like (UBL) domains. Across coronaviruses, PLpro showed divergent selectivity for recognition and cleavage of posttranslational conjugates despite sequence conservation. We show that SARS-CoV-2 PLpro binds human ISG15 and K48-linked di-ubiquitin (K48-Ub2) with nanomolar affinity and detect alternate weaker-binding modes. Crystal structures of untethered PLpro complexes with ISG15 and K48-Ub2 combined with solution NMR and cross-linking mass spectrometry revealed how the two domains of ISG15 or K48-Ub2 are differently utilized in interactions with PLpro. Analysis of protein interface energetics predicted differential binding stabilities of the two UBL/Ub domains that were validated experimentally. We emphasize how substrate recognition can be tuned to cleave specifically ISG15 or K48-Ub2 modifications while retaining capacity to cleave mono-Ub conjugates. These results highlight alternative druggable surfaces that would inhibit PLpro function.


Subject(s)
COVID-19 , SARS-CoV-2 , Ubiquitin , Humans , Cytokines/metabolism , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitins/metabolism
5.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1133-1139, 2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2289200

ABSTRACT

The coronavirus papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for viral polypeptide cleavage and the deISGylation of interferon-stimulated gene 15 (ISG15), which enable it to participate in virus replication and host innate immune pathways. Therefore, PLpro is considered an attractive antiviral drug target. Here, we show that parthenolide, a germacrane sesquiterpene lactone, has SARS-CoV-2 PLpro inhibitory activity. Parthenolide covalently binds to Cys-191 or Cys-194 of the PLpro protein, but not the Cys-111 at the PLpro catalytic site. Mutation of Cys-191 or Cys-194 reduces the activity of PLpro. Molecular docking studies show that parthenolide may also form hydrogen bonds with Lys-192, Thr-193, and Gln-231. Furthermore, parthenolide inhibits the deISGylation but not the deubiquitinating activity of PLpro in vitro. These results reveal that parthenolide inhibits PLpro activity by allosteric regulation.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Papain-Like Proteases , Antiviral Agents/pharmacology , Humans , Interferons , Lactones , Molecular Docking Simulation , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2 , Sesquiterpenes , Sesquiterpenes, Germacrane , Ubiquitin/metabolism
6.
Signal Transduct Target Ther ; 8(1): 53, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2232506

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe global health crisis; its structural protein envelope (E) is critical for viral entry, budding, production, and induction of pathology which makes it a potential target for therapeutics against COVID-19. Here, we find that the E3 ligase RNF5 interacts with and catalyzes ubiquitination of E on the 63rd lysine, leading to its degradation by the ubiquitin-proteasome system (UPS). Importantly, RNF5-induced degradation of E inhibits SARS-CoV-2 replication and the RNF5 pharmacological activator Analog-1 alleviates disease development in a mouse infection model. We also found that RNF5 is distinctively expressed in different age groups and in patients displaying different disease severity, which may be exploited as a prognostic marker for COVID-19. Furthermore, RNF5 recognized the E protein from various SARS-CoV-2 strains and SARS-CoV, suggesting that targeting RNF5 is a broad-spectrum antiviral strategy. Our findings provide novel insights into the role of UPS in antagonizing SARS-CoV-2 replication, which opens new avenues for therapeutic intervention to combat the COVID-19 pandemic.


Subject(s)
COVID-19 , Ubiquitin-Protein Ligases , Animals , Mice , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , SARS-CoV-2/metabolism , COVID-19/genetics , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Ubiquitin/metabolism , DNA-Binding Proteins/metabolism , Membrane Proteins
7.
Semin Cell Dev Biol ; 132: 16-26, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2211427

ABSTRACT

Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.


Subject(s)
COVID-19 , Interferons , Humans , Peptide Hydrolases/metabolism , SARS-CoV-2 , Ubiquitin/metabolism , Antiviral Agents , Polyproteins , Immunity , Cytokines/metabolism , Ubiquitins/genetics , Ubiquitin Thiolesterase
8.
PLoS Pathog ; 18(12): e1011065, 2022 12.
Article in English | MEDLINE | ID: covidwho-2197183

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle. Additionally, PLpro can cleave both ubiquitin and the ubiquitin-like protein ISG15 from host cell substrates as a mechanism to evade innate immune responses during infection. These roles make PLpro an attractive antiviral drug target. Here we demonstrate that ubiquitin variants (UbVs) can be selected from a phage-displayed library and used to specifically and potently block SARS-CoV-2 PLpro activity. A crystal structure of SARS-CoV-2 PLpro in complex with a representative UbV reveals a dimeric UbV bound to PLpro at a site distal to the catalytic site. Yet, the UbV inhibits the essential cleavage activities of the protease in vitro and in cells, and it reduces viral replication in cell culture by almost five orders of magnitude.


Subject(s)
COVID-19 , Ubiquitin , Humans , Ubiquitin/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Catalytic Domain , Papain/chemistry , Papain/metabolism , Virus Replication
9.
Clin Transl Med ; 12(12): e1103, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2127659

ABSTRACT

BACKGROUND: The crosstalk between the ubiquitin-proteasome and the immune system plays an important role in the health and pathogenesis of viral infection. However, there have been few studies of ubiquitin activation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We investigated the effect of ubiquitination on SARS-CoV-2 infection and patient prognosis by integrating published coronavirus disease 2019 (COVID-19) multi-transcriptome data and bioinformatics methods. RESULTS: The differential expression of COVID-19 samples revealed changed ubiquitination in most solid and hollow organs, and it was activated in lymphatic and other immune tissues. In addition, in the respiratory system of COVID-19 patients, the immune response was mainly focused on the alveoli, and the expression of ubiquitination reflected increasing immune infiltration. Ubiquitination stratification could significantly differentiate patients' prognosis and inflammation levels through the general transcriptional analysis of the peripheral blood of patients with COVID-19. Moreover, high ubiquitination levels were associated with a favourable prognosis, low inflammatory response, and reduced mechanical ventilation and intensive care unit. Moreover, high ubiquitination promoted a beneficial immune response while inhibiting immune damage. Finally, prognostic stratification and biomarker screening based on ubiquitination traits played an important role in clinical management and drug development. CONCLUSION: Ubiquitination characteristics provides new ideas for clinical intervention and prognostic guidance for COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Ubiquitination/genetics , Ubiquitin , Proteasome Endopeptidase Complex
10.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2123699

ABSTRACT

The outbreaks caused by RNA and DNA viruses, such as SARS-CoV-2 and monkeypox, pose serious threats to human health. The RLR and cGAS-STING pathways contain major cytoplasmic sensors and signaling transduction axes for host innate antiviral immunity. In physiological and virus-induced pathological states, the activation and inactivation of these signal axes are tightly controlled, especially post-translational modifications (PTMs). E3 ubiquitin ligases (E3s) are the direct manipulator of ubiquitin codons and determine the type and modification type of substrate proteins. Therefore, members of the E3s family are involved in balancing the host's innate antiviral immune responses, and their functions have been extensively studied over recent decades. In this study, we overviewed the mechanisms of different members of three E3s families that mediate the RLR and cGAS-STING axes and analyzed them as potential molecular targets for the prevention and treatment of virus-related diseases.


Subject(s)
COVID-19 , Virus Diseases , Humans , Ubiquitin , Ubiquitin-Protein Ligases , Membrane Proteins/metabolism , SARS-CoV-2/metabolism , Nucleotidyltransferases/metabolism , Immunity, Innate
11.
Methods Mol Biol ; 2591: 171-188, 2023.
Article in English | MEDLINE | ID: covidwho-2103726

ABSTRACT

Both severe acute respiratory syndrome coronavirus 1 and 2 (SARS-CoV-1 and SARS-CoV-2) encode a papain-like protease (PLpro), which plays a vital role in viral propagation. PLpro accomplishes this function by processing the viral polyproteins essential for viral replication and removing the small proteins, ubiquitin and ISG15 from the host's key immune signaling proteins, thereby preventing the host's innate immune response. Although PLpro from both SARS-CoV-1 and SARS-CoV-2 are structurally highly similar (83% sequence identity), they exhibit functional variability. Hence, to further elucidate the mechanism and aid in drug discovery efforts, the biochemical and kinetic characterization of PLpro is needed. This chapter describes step-by-step experimental procedures for evaluating PLpro activity in vitro using activity-based probes (ABPs) along with fluorescence-based substrates. Herein we describe a step-by-step experimental procedure to assess the activity of PLpro in vitro using a suite of activity-based probes (ABPs) and fluorescent substrates and how they can be applied as fast and yet sensitive methods to calculate kinetic parameters.


Subject(s)
COVID-19 , Ubiquitin , Humans , Ubiquitin/metabolism , SARS-CoV-2/genetics , Coronavirus Papain-Like Proteases , Papain , Peptide Hydrolases/metabolism , Ubiquitins/metabolism , Cytokines/metabolism
12.
J Trace Elem Med Biol ; 75: 127089, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2086504

ABSTRACT

BACKGROUND: The ubiquitin system is a modification process with many different cellular functions including immune signaling and antiviral functions. E3 ubiquitin ligases are enzymes that recruit an E2 ubiquitin-conjugating enzyme bound to ubiquitin in order to catalyze the transfer of ubiquitin from the E2 to a protein substrate. The RING E3s, the most abundant type of ubiquitin ligases, are characterized by a zinc (II)-binding domain called RING (Really Interesting New Gene). Viral replication requires modifying and hijacking key cellular pathways within host cells such as cellular ubiquitination. There are well-established examples where a viral proteins bind to RING E3s, redirecting them to degrade otherwise long-lived host proteins or inhibiting E3's ubiquitination activity. Recently, three binary interactions between SARS-CoV-2 proteins and innate human immune signaling Ε3 RING ligases: NSP15-RNF41, ORF3a-TRIM59 and NSP9-MIB1 have been experimentally established. METHODS: In this work, we have investigated the mode of the previous experimentally supported NSP15-RNF41, ORF3a,-TRIM59 and NSP9-MIB1 binary interactions by in silico methodologies intending to provide structural insights of E3-virus interplay that can help identify potential inhibitors that could block SARS-CoV-2 infection of immune cells. CONCLUSION: In silico methodologies have shown that the above human E3 ligases interact with viral partners through their Zn(II) binding domains. This RING mediated formation of stable SARS-CoV-2-E3 complexes indicates a critical structural role of RING domains in immune system disruption by SARS-CoV-2-infection. DATA AVAILABILITY: The data used to support the findings of this research are included within the article and are labeled with references.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ubiquitin-Protein Ligases , Ubiquitin , Zinc , Tripartite Motif Proteins , Intracellular Signaling Peptides and Proteins
13.
Int J Mol Sci ; 23(19)2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2066136

ABSTRACT

Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Interferon Type I , Interferon-Induced Helicase, IFIH1 , SARS-CoV-2 , Viral Nonstructural Proteins , COVID-19 , Coronavirus Infections/immunology , Humans , Infectious bronchitis virus/metabolism , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1/metabolism , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitinated Proteins , Viral Nonstructural Proteins/metabolism
14.
Biochem J ; 479(20): 2175-2193, 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2062282

ABSTRACT

Coronaviruses have been responsible for multiple challenging global pandemics, including coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Papain-like protease (PLpro), one of two cysteine proteases responsible for the maturation and infectivity of SARS-CoV-2, processes and liberates functional proteins from the viral polyproteins and cleaves ubiquitin and ISG15 modifications to inhibit innate immune sensing. Consequently, PLpro is an attractive target for developing COVID-19 therapies. PLpro contains a zinc-finger domain important for substrate binding and structural stability. However, the impact of metal ions on the activity and biophysical properties of SARS-CoV-2 PLpro has not been comprehensively studied. Here, we assessed the impacts of metal ions on the catalytic activity of PLpro. Zinc had the largest inhibitory effect on PLpro, followed by manganese. Calcium, magnesium, and iron had smaller or no effects on PLpro activity. EDTA at a concentration of 0.5 mM was essential for PLpro activity, likely by chelating trace metals that inhibit PLpro. IC50 values for ZnCl2, ZnSO4, and MnCl2 of 0.42 ± 0.02 mM, 0.35 ± 0.01 mM, and 2.6 ± 0.3 mM were obtained in the presence of 0.5 mM EDTA; in the absence of EDTA, the estimated IC50 of ZnCl2 was 14 µM. Tryptophan intrinsic fluorescence analysis confirmed the binding of zinc and manganese to PLpro, and differential scanning calorimetry revealed that zinc but not manganese reduced ΔHcal of PLpro. The results of this study provide a reference for further work targeting PLpro to prevent and treat COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , Magnesium , Calcium , Tryptophan , Edetic Acid , Ubiquitin/metabolism , Polyproteins , Ions , Zinc , Iron
15.
Signal Transduct Target Ther ; 7(1): 300, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2031821

ABSTRACT

Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Neoplasms/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics
16.
Chembiochem ; 23(19): e202200327, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-1999838

ABSTRACT

Emerging variants of SARS-CoV-2 and potential novel epidemic coronaviruses underline the importance of investigating various viral proteins as potential drug targets. The papain-like protease of coronaviruses has been less explored than other viral proteins; however, its substantive role in viral replication and impact on the host immune response make it a suitable target to study. This review article focuses on the structure and function of the papain-like protease (PLpro ) of SARS-CoV-2, including variants of concern, and compares it to those of other coronaviruses, such as SARS-CoV-1 and MERS-CoV. The protease's recognition motif is mirrored in ubiquitin and ISG15, which are involved in the antiviral immune response. Inhibitors, including GRL0617 derivatives, and their prospects as potential future antiviral agents are also discussed.


Subject(s)
COVID-19 Drug Treatment , Papain , Aniline Compounds , Antiviral Agents/chemistry , Benzamides , Coronavirus Papain-Like Proteases , Humans , Naphthalenes , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2 , Ubiquitin/metabolism , Viral Proteins/chemistry
17.
Int J Mol Sci ; 21(14)2020 Jul 08.
Article in English | MEDLINE | ID: covidwho-1934087

ABSTRACT

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.


Subject(s)
Acute Lung Injury/metabolism , Deubiquitinating Enzymes/metabolism , Respiratory Distress Syndrome/metabolism , Animals , Humans , Pneumonia/metabolism , Signal Transduction/physiology , Ubiquitin/metabolism , Ubiquitination/physiology
18.
Biomolecules ; 12(7)2022 07 01.
Article in English | MEDLINE | ID: covidwho-1917275

ABSTRACT

Ubiquitin is a small protein that is conjugated to target proteins to signal a great number of critical biological processes. Impaired ubiquitin signaling and defects in the ubiquitin proteasome system (UPS) surveillance are implicated in many human diseases, including cancer. Characterization of the physiological roles of UPS components and their regulatory mechanisms is therefore vital for the identification of therapeutic targets and the development of tools and paradigms to better understand and treat human diseases. In this Special Issue, we assembled seven original research and review articles to provide insights on the multifaceted role of the UPS in pathogenesis and disease, covering the areas of molecular and cellular mechanisms of UPS enzymes, biochemical and biophysical characterization strategies, drug development, and targeted protein degradation.


Subject(s)
Neoplasms , Ubiquitin , Humans , Neoplasms/genetics , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
19.
Comput Biol Med ; 146: 105660, 2022 07.
Article in English | MEDLINE | ID: covidwho-1894904

ABSTRACT

Homologous to E6AP carboxyl-terminus (HECT)-type E3 ligase performs ubiquitin (Ub)-proteasomal protein degradation via forming a complex with E2∼Ub. Enveloped viruses including SARS-CoV-2 escape from the infected cells by harnessing the E-class vacuolar protein-sorting (ESCRT) machinery and mimic the cellular system through PPAY motif-based linking to HECT Ub ligase activity. In the present study, we have characterized the binding pattern of E2UbcH5B to HECT domains of NEDD4L, WWP1, WWP2, HECW1, and HECW2 through in silico analysis to isolate the E2UbcH5B-specific peptide inhibitors that may target SARS-CoV-2 viral egression. Molecular dynamics analysis revealed more opening of E2UbcH5B-binding pocket upon binding to HECTNEDD4L, HECTWWP1, HECTWWP2, HECTHECW1, and HECTHECW2. We observed similar binding pattern for E2UbcH5B and mentioned HECT domains as previously reported for HECTNEDD4L where Trp762, Trp709, and Trp657 residues of HECTNEDD4L, HECTWWP1, and HECTWWP2 are involved in making contacts with Ser94 residue of E2UbcH5B. Similarly, corresponding to HECTNEDD4L Tyr756 residue, HECTWWP1, HECTWWP2, HECTHECW1, and HECTHECW2-specific Phe703, Phe651, Phe1387, and Phe1353 residues execute interaction with E2UbcH5B. Our analysis suggests that corresponding to Cys942 of HECTNEDD4L, Cys890, Cys838, Cys1574, and Cys1540 residues of HECTWWP1, HECTWWP2, HECTHECW1, and HECTHECW2, respectively are involved in E2-to-E3 Ub transfer. Furthermore, MM-PBSA free energy calculations revealed favorable energy values for E2UbcH5B-HECT complexes along with the individual residue contributions. Subsequently, two E2UbcH5B-derived peptides (His55-Phe69 and Asn81-Ala96) were tested for their binding abilities against HECT domains of NEDD4L, WWP1, WWP2, HECW1, and HECW2. Their binding was validated through substitution of Phe62, Pro65, Ile84, and Cys85 residues into Ala, which revealed an impaired binding, suggesting that the proposed peptide ligands may selectively target E2-HECT binding and Ub-transfer. Collectively, we propose that peptide-driven blocking of E2-to-HECT Ub loading may limit SARS-CoV-2 egression and spread in the host cells.


Subject(s)
COVID-19 , Ubiquitin , Binding Sites , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Ligands , Nerve Tissue Proteins , Peptides/metabolism , Protein Binding , SARS-CoV-2 , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/chemistry
20.
Cells ; 11(9)2022 04 30.
Article in English | MEDLINE | ID: covidwho-1822414

ABSTRACT

The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.


Subject(s)
Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Cell Cycle Checkpoints , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL